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Fig. 1. Two 4D armadillo prisms brush past each other. In the top left, a 3D slice where the armadillos are most visible. Bottom left, a different 3D slice reveals
the extrusion direction. In the middle are two stills from a four-dimensional rotation about their collision at frame 800. On the right, they have failed to hug
and instead have passed through each other.

We present a method for simulating deformable bodies in four spatial di-
mensions. To accomplish this, we generalize several pieces of the traditional
simulation pipeline. Starting from the meshing stage, we propose a simple
method for generating a pentachoral mesh, the 4D analog of a tetrahedral
mesh. Next, we show how to generalize the deformation invariants, allow-
ing us to construct 4D hyperelastic energies that lead directly to hyper-
dimensional deformation forces. Finally, we formulate collision detection
and response in 4D. Our eigenanalyses of the resulting deformation and
collision energies generalize to arbitrarily higher dimensions. The resulting
simulations display a variety of previously unseen visual phenomena.

CCS Concepts: • Computing methodologies→ Collision detection; Physi-
cal simulation;Mesh geometry models;Model development and analysis.
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1 INTRODUCTION
Hyper-dimensional geometries, 4D shapes that occupy four spatial
dimensions beyond the traditional 2D and 3D, have attracted interest
in art [Henderson 2018], visualization [Hanson and Cross 1993],
perception [Miwa et al. 2015], film [Seymour 2014] and VR [Jamroz
2009]. Cavallo [2021] surveyed previous computer graphics work,
which includes the rendering of higher-dimensional objects [Kim
et al. 2022] and their rigid body simulation [Bosch 2020].
We present the first hyper-dimensional simulation of 4D defor-

mation. This requires generalizing many pieces of the simulation
pipeline, including meshing, force computation, and collision pro-
cessing. We propose novel approaches to all of these, and demon-
strate their effectiveness in a variety of scenes.
For meshing, the 4D analog of a 3D tetrahedral mesh is a penta-

choral mesh. While methods for generating 3D meshes are mature,
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4D meshing techniques are far less developed. We present a sim-
ple extrusion and filling method that uses existing 3D meshing
techniques to generate viable 4D meshes.

For internal material forces, we show how to generalize the tradi-
tional 2D and 3D deformation invariants [Bonet et al. 2021]. Once
these are in place, existing hyperelastic energies can be applied in
4D. The eigenanalysis of these invariants [Lin et al. 2024; Smith et al.
2019] can then be extended to 4D, which additionally reveals the
eigenstructure of the arbitrary 𝑛-D case.
For collision processing, we show that the equivalent of point-

triangle and edge-edge collisions in 3D are point-tetrahedron and
edge-triangle in 4D. We formulate collision penalty energies for
both of these cases, and similar to the 3D case [Huang et al. 2024;
Shi and Kim 2023], are able to obtain analytic eigensystems for
each. Our analysis again generalizes to 𝑛-D, effectively obtaining
the eigensystems for all higher-dimensional penalty energies.

Our contributions are:

• The first hyper-dimensional deformable body simulator.
• An extrusion and filling method for 4D mesh generation.
• 4D formulation of elastic deformation and collision energies.
• 𝑛-D analysis and eigensystems for elastic deformation and
collision energies.

2 RELATED WORK
Deformation in computer graphics has traditionally been examined
in 2D [Alexa et al. 2000] and 3D [Baraff and Witkin 1998]. One pop-
ular method [Debunne et al. 2001; Müller et al. 2002] is to simulate
a 3D volume using a tetrahedral mesh [Alliez et al. 2005; Hu et al.
2018; Si 2015], resolve its internal material forces using hyperelastic
strain energies [Bonet et al. 2021], and to resolve collisions using
a variety of energy-based and geometric methods [Andrews et al.
2022; Gottschalk et al. 1996; Moore and Wilhelms 1988].
This class of physics-based simulations has not previously been

extended to 4D, although other topics in computer graphics have
been investigated in higher dimensions. One of the most familiar
is the representation of 3D rotations using (unit) 4D quaternions
[Hanson 2005]. Quaternions have also been used to generate hyper-
dimensional fractals [Hart et al. 1989; Norton 1982], but did not
simulate elastic deformation. Other 4D approaches assign novel
sensory modalities to the fourth dimension [Nam et al. 2024], but
we explicitly assign it to a spatial dimension.

Existing work has instead largely focused on rendering and visu-
alization. For example, van Wijk and van Liere [1993] proposed the
Hyperslice method for extracting 2D slices from higher-dimensional
data, while Hibbard et al. [1996] introduced the Vis5D system for
visualizing time-varying 4D scalar data. More recently, Kim et al.
[2022] proposed amethod formodeling and rendering non-Euclidean
geometries, in particular 3D polytopes embedded in 4D Euclidean
spaces, and Cavallo [2021] examined the authoring the rendering
issues associated with 4D spatial content.

3Dmeshing can use higher dimensions to remove self-intersections
[Zhong et al. 2018] and ensure anisotropy [Lévy and Bonneel 2013],
but the problem of full 4D meshing has only been investigated by
a handful of researchers [Brandts et al. 2007; Petrov and Todorov

2021], and sometimes attaches the additional dimension to time
[Caplan et al. 2020] instead of space.
Other fields have investigated high-dimensional elasticity for

several applications. Borrel and Bechmann [1991] use the fourth
dimension as a space-time regularizer, and Zhao [2017] use four-
dimensional elastic lattices to surpass limitations in three-dimensional
models. von Danwitz et al. [2021] additionally represent topology
changes for obstacles in fluid dynamics with four-dimensional elas-
tic meshes, andWang et al. [2016] formalizes relativistic deformation
using spacetime coordinates.

The closest work to ours is Bosch [2020], which formulated rigid
body dynamics in higher dimensions. They also reformulated the
collision pipeline to account for the extra dimension, but the rigidity
condition allowed them to address overlapping polytopes. More
granular point-tetrahedron and edge-triangle cases are required
under deformation. Their rigidity assumption also only required a
4D inertia tensor to enable dynamics simulation, but deformation
requires a full 4D elasticity formulation.

3 MESH GENERATION
In 2D, the simplicial element is the triangle, while in 3D the equiva-
lent simplex is the tetrahedron. In 4D, the equivalent primitive is
the 5-point pentachoron. Unlike triangle and tetrahedral meshes,
pentachoral meshes are not readily available online, and there is no
standard meshing algorithm for their generation.
We will instead use well-conditioned tetrahedral meshes gener-

ated using mature algorithms [Si 2015] as a starting point to create
simulation-ready pentachoralized prismatic meshes. We present the
process as a sequence of extrusions and fillings. For our use case,
these techniques provide a sufficient amount of control over mesh
resolution and expressiveness. Higher-dimensional constrained De-
launay triangulations are also possible, but adding Steiner points
for these cases is still challenging [Shewchuk 2008].

3.1 3D Extrude and Fill
For illustrative purposes, we will first show the extrusion and filling
process in 3D, where we extrude a triangle mesh to generate a
tetrahedral mesh. With this established, we can then extend the
process analogously to 4D, where we extrude a tetrahedral mesh
into a pentachoral mesh.

Consider a set of mesh verticesV = {v0, . . . , v𝑛}, where v𝑖 ∈ R3.
Let a triangle t = {𝑖, 𝑗, 𝑘} be a triplet of integers that specify v𝑖 ,
v𝑗 , and v𝑘 as a triangle in the mesh. As input, we take a set of
vertices V and triangles T = {t0, . . . , t𝑚}, along with an extrusion
vector ve ∈ R3. We can then generate a tetrahedral mesh along
the extrusion direction by forming a new set of vertices Ve and
tetrahedra He ⊂ N4.

3.1.1 Single triangle preliminaries. The case of a single triangle
is straightforward. Given V = {v0, v1, v2}, T = {{0, 1, 2}}, and
extrusion direction ve, a set of extruded vertices can be written:

Ve = {v0, v1, v2, v0 + ve, v1 + ve, v2 + ve} (1)

The new set Ve now forms a prism that must then be decomposed
into tetrahedra. Successive corner cutting leads to one possible
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Fig. 2. Correspondence from directed graphs to surface triangulation. For each
edge on the input shape, we cut a diagonal on the corresponding extruded
face according to the direction assigned to the edge.

decomposition:

H𝑒 = {{0, 1, 2, 5}, {0, 3, 4, 5}, {0, 1, 4, 5}} (2)

Rotations and reflections of vertex labels then yield six distinct
possible decompositions. For the single triangle case, selecting any
one of the decompositions suffices to generate a tetrahedralized
triangular prism.

3.1.2 Multiple triangles. For adjacent triangles that share edges,
obtainingVe remains straightforward: add ve to each v𝑖 ∈ V and
append to Ve. However, tetrahedral decomposition becomes more
involved. The shared edges between triangles extrude into rectan-
gles that must be triangulated in a way that ensures compatibility
between each prism pair.

To guarantee compatibility, we observe that each tetrahedraliza-
tion of the triangular prism induces a unique set of boundary cuts
on the prism’s surface, where the diagonal cut on each rectangle
can then be encoded as a direction on the edge of the original trian-
gle (Fig. 2). By assigning each edge a direction, we guarantee that
boundaries between tetrahedralized prisms are compatible after
extrusion. Adjacent prisms query their shared edge’s direction to de-
termine the orientation of the diagonal cut, so there is no possibility
of having mismatching cuts from incompatible decompositions.
However, it can be impossible to cleanly tetrahedralize prisms

with certain sets of boundary cuts without Steiner points. Fortu-
nately, the only two cases where an extruded triangle tetrahedral-
ization requires Steiner points is exactly the case of a cycle. As
long as edge directions form a directed acyclic graph (DAG), the
diagonals encoded by the directions form a consistent, compatible
tetrahedralization of the adjoining prisms.
Using vertex indices as a total order to obtain a DAG, we then

assign every extruded prism a tetrahedralization according to the
edge directions, which yields a tetrahedral mesh with consistent
internal faces (Fig. 3). We do not claim this as a general method
for generating tetrahedral meshes, but rather one way of reliably
generating a viable mesh. Crucially, the method generalizes to 4D.

3.2 4D Extrude and Fill
Extrusion in 4D follows from the 3D case.We start with a tetrahedral
mesh composed of vertices V , where v𝑖 ∈ R4 with the fourth coor-
dinate set to zero, tetrahedraH ⊂ N4, and an extrusion direction
ve ∈ R4 where the fourth coordinate is non-zero. We can extrude

Fig. 3. Extrusion/tetrahedralization with a simple starting mesh. First create a
directed acyclic graph (DAG) using vertex orders, then assign corresponding
tetrahedralizations to each triangular prism. The same process generates
pentachoralized models from tetrahedral meshes.

V along ve to obtain Ve ⊂ R4, which forms a set of 4D tetrahedral
prisms that must then be decomposed into pentachorons.
Analogous to the 3D case, where each rectangular face must

be divided in a way that guarantees that the resulting tetrahedra
are compatible, each tetrahedral prism must now be divided in a
way to ensure compatible pentachora. Fortunately, the strategy of
forming a DAG and using the edge directions to prescribe boundary
decompositions continues to work in 4D.

By examining the edge directions of a tetrahedral prism, we can
assign it one of 24 possible pentachoral decompositions. The DAG
on the initial tetrahedral mesh will then guarantee cross-prism com-
patibility. In the supplemental materials, we have included scripts
that exhaustively ensure that every possible set of boundary cuts as-
signed to a tetrahedron in this manner gives rise to a valid pentachor-
alization. We also include programs for performing extrusion/filling
in 3D and 4D.

Others have speculated that finding a valid pentachoralization of
a 3D mesh extruded into a 4D prism is equivalent to solving the NP-
complete monochromatic triangle problem on a graph [CodeParade
2023]. We have found that it instead reduces to the much simpler
problem of constructing a DAG.

Finally, even if the initial tetrahedral mesh was well-conditioned
[Shewchuk 2002], there is no guarantee that the resulting penta-
choral mesh will be as well. To the contrary, if ∥v𝑒 ∥ is very large, it
will inevitably generate “skinny” pentachorons that are degenerate
along one direction, and lead to catastrophically ill-conditioned ma-
trix inverses during deformation gradient computation. [Kim et al.
2019]
To ensure that the pentachorons were well-conditioned, if ∥v𝑒 ∥

was large, we subdivided the vector and performed the extrusion
in several smaller steps rather than one large displacement. An
analogous 3D surface operation would be be subdivide a cylinder
along its height in order to prevent long, skinny triangles from
stretching from one end cap to another. Generalized subdivision is
also available for refinement purposes [Petrov and Todorov 2018].

4 DEFORMATION SIMULATION
To simulate deformations in 4D, we can use any standard method,
e.g. the implicit solver from Baraff and Witkin [1998]:(

M − ℎ
𝜕f
𝜕v

− ℎ2 𝜕f
𝜕x

)
Δx = ℎ2f + ℎ

(
M − ℎ

𝜕f
𝜕v

)
v𝑛 (3)
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Above,M is the mass matrix, f is the internal material force, ℎ is the
timestep, and x and v are the position and velocity. The overall form
of the equation is agnostic to the spatial dimension, and remains
the same between 2D and 3D. Thus, it can also be applied in 4D, but
requires a 4D method for computing f and its derivatives.
For concreteness, we will examine a 4D version of f using the

Stable Neo-Hookean (SNH) [Smith et al. 2018] elastic energy

𝜓SNH =
1
2
𝜇 (𝐼2 − 4) + 1

2
𝜆(𝐼3 − 𝛼)2 (4)

where 𝜇 is the shear modulus, or Lame’s second parameter, 𝜆 is
Lame’s first parameter, and 𝛼 = 1 + 𝜇

𝜆
. The terms

𝐼2 = tr(F⊤F) 𝐼3 = det(F) (5)

are deformation invariants [Bonet et al. 2021], which are also agnos-
tic to the spatial dimension. The F denotes the deformation gradient.

Sections 4.1 through 4.5 contain our detailed analyses of higher-
dimensional invariants and their derivatives in 4D, allowing for
energy Hessian eigenclamping. For readers interested in collision
detection, we refer them to section 5.

4.1 Deformation Gradient
The size of the deformation gradient matrix corresponds to the
spatial dimension. In 2D, F ∈ R2×2. In 3D, F ∈ R3×3. It follows that
in 4D, F ∈ R4×4. Computing F also follows analogously from the
2D and 3D cases. Given a pentachoron composed of the rest points
{p0, ..., p4} and deformed points {p0, ..., p4}, we can construct:

D𝑚 =

 p̄1 − p̄0 p̄2 − p̄0 p̄3 − p̄0 p̄4 − p̄0

 (6)

D𝑠 =

 p1 − p0 p2 − p0 p3 − p0 p4 − p0

 (7)

The expression for F and its labeled columns is then:

F = D𝑠D−1
𝑚 =

 f0 f1 f2 f3

 (8)

With F established, we can now analyze the deformation invariants.

4.2 𝐼2 Eigenanalysis
For the 𝐼2 = tr(F⊤F) invariant, the general form of the gradient is
the same as in 2D and 3D, albeit in R16:

𝜕𝐼2
𝜕F

= 2F g2 = vec
(
𝜕𝐼2
𝜕F

)
(9)

and the vectorized R16×16 force gradient is

vec
(
𝜕2𝐼2
𝜕F2

)
=

𝜕g2
𝜕F

= H2 = 2I (10)

Similar to the 2D and 3D cases, the eigenvalues are all 2, and the
multiplicity means that the eigenvectors span an arbitrary rank-16
vector space. The form of H2 will stay consistent regardless of the
dimension, so the 𝑛-D eigensystem is always 𝑛2 eigenvalues equal
to 2, and an arbitrary rank-𝑛2 vector space.

4.3 𝐼3 Eigenanalysis
4.3.1 4D Cross Product. The 3D cross product of two vectors gen-
erates a third orthogonal vector that completes the basis span. An
analogous 4D operation should take three vectors and produce a
fourth orthogonal vector. We can generalize the determinant-like
formulation of the 3D cross product as

×(x, y, z) = det


𝑥0 𝑦0 𝑧0 ê0
𝑥1 𝑦1 𝑧1 ê1
𝑥2 𝑦2 𝑧2 ê2
𝑥3 𝑦3 𝑧3 ê3

 (11)

where e𝑖 are the principle directors of R4. Carrying through expan-
sion by minors and using scalar-vector multiplication yields the
following vector in R4:

×(x, y, z) = −ê0 det

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3

 + ê1 det

𝑥0 𝑦0 𝑧0
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3


−ê2 det


𝑥0 𝑦0 𝑧0
𝑥1 𝑦1 𝑧1
𝑥3 𝑦3 𝑧3

 + ê3 det

𝑥0 𝑦0 𝑧0
𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2


For any linearly independent triplet {x, y, z}, ×(x, y, z) generates a
fourth orthogonal vector. We additionally define the linear operator
[u, v]× ∈ R4×4 such that [u, v]× · x = ×(u, v, x):

[u, v]× =


0 𝑢3𝑣2 − 𝑢2𝑣3 𝑢1𝑣3 − 𝑢3𝑣1 𝑢2𝑣1 − 𝑢1𝑣2

𝑢2𝑣3 − 𝑢3𝑣2 0 𝑢3𝑣0 − 𝑢0𝑣3 𝑢0𝑣2 − 𝑢2𝑣0
𝑢3𝑣1 − 𝑢1𝑣3 𝑢0𝑣3 − 𝑢3𝑣0 0 𝑢1𝑣0 − 𝑢0𝑣1
𝑢1𝑣2 − 𝑢2𝑣1 𝑢2𝑣0 − 𝑢0𝑣2 𝑢0𝑣1 − 𝑢1𝑣0 0


4.3.2 𝐼3 Derivatives. Using these operators, the gradient becomes

𝜕𝐼3
𝜕F

=

 − × (f1, f2, f3) ×(f0, f2, f3) − × (f0, f1, f3) ×(f0, f1, f2)


Using the vectorization g3 = vec
(
𝜕𝐼3
𝜕F

)
, the Hessian becomes

𝜕g3
𝜕F

= H3 =


0 [f3, f2]× [f1, f3]× [f2, f1]×
. . . 0 [f3, f0]× [f0, f2]×
. . .

. . . 0 [f1, f0]×
sym. . . . . . . 0


We can now analyze the invariant’s eigensystem.

4.3.3 Eigensystem. The 16 eigenpairs of H3 are 4D generalizations
of the 3D eigenpairs for 𝐼3 from Smith et al. [2018]. Given the singular
value decomposition F = U𝚺V⊤, the first six eigenvalues correspond
to generalized twist modes. For brevity, we list the first two here,
with the complete listing in §1 of the supplemental materials:

𝜆
𝐼3
0 = 𝜎0𝜎1 𝜆

𝐼3
1 = 𝜎0𝜎2 (12)

The 𝜎𝑖 are singular values from 𝚺. The eigenmatrices Q𝑖 vectorize
into the eigenvectors q𝑖 = vec (Q𝑖 ), and have the general form
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Q𝑖 = 1/√2UΘ𝑖V⊤. The first two Θ𝑖 are

Θ0 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 Θ1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 (13)

and the complete set is in the supplemental materials. The next
six are generalized flip modes, where 𝜆

𝐼3
𝑖+6 = −𝜆𝐼3

𝑖
. The first two

eigenmatrices are

Θ6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 Θ7 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 (14)

The final four eigenmodes are linear combinations of the stretch
modes, the first two of which are:

Q′
0 = U


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 V
⊤ Q′

1 = U


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 V
⊤ (15)

Since they are orthogonal to the other twelve eigenmodes, we can
deflate H3 using q′

𝑖
= vec

(
Q′
𝑖

)
and D =

[
q′0 |q

′
1 |q

′
2 |q

′
3
]
to obtain

D⊤H3D =

©«
0 𝜎2𝜎3 𝜎1𝜎3 𝜎1𝜎2

𝜎2𝜎3 0 𝜎0𝜎3 𝜎0𝜎2
𝜎1𝜎3 𝜎0𝜎3 0 𝜎0𝜎1
𝜎1𝜎2 𝜎0𝜎2 𝜎0𝜎1 0

ª®®®¬ (16)

Similar to Smith et al. [2018], the eigenpairs of this deflated matrix
can be used to obtain the final four modes of H3.

4.3.4 𝑛-D Generalization. The analytical derivatives of 𝐼3 can be
stated for 𝑛 ≥ 2 using Jacobi’s formula:

𝜕𝐼3
𝜕F

=
𝜕 det (F)

𝜕F
= (adj (F))⊤ (H3)𝑖 𝑗𝑝𝑞 = (−1)𝑠M𝑖𝑝,𝑗𝑞

where 0 ≤ 𝑖, 𝑗, 𝑝, 𝑞 ≤ 𝑛 − 1 and adj (F) is the adjugate matrix of F.
The matrixM𝑖𝑝,𝑗𝑞 is the second minor: the determinant of Fwith its
𝑖th and 𝑝th row, the 𝑗th and 𝑞th column removed, andM𝑖𝑝,𝑗𝑞 = 0
when 𝑖 = 𝑝 or 𝑗 = 𝑞. The constant 𝑠 is determined by:

𝑠 =

{
𝑖 + 𝑗 + 𝑝 + 𝑞 (𝑖 < 𝑝 and 𝑗 < 𝑞) or (𝑖 > 𝑝 and 𝑗 > 𝑞)
𝑖 + 𝑗 + 𝑝 + 𝑞 + 1 otherwise

For the eigensystems, following the patterns spanning 2D to 4D, we
hypothesize that any𝑛-D version of 𝐼3 will yield𝑛 linearly combined
stretch modes. The remaining 𝑛2 −𝑛 modes will be half twist modes
and half flip modes. Since 𝐼3 = Π𝑛−1

𝑖=0 𝜎𝑖 , the corresponding flip
eigenvalues will be −𝐼3/𝜎𝑖𝜎 𝑗 , where 𝑖 ≠ 𝑗 and 1s appear at (𝑖, 𝑗) and
( 𝑗, 𝑖) in the center matrix. In the twist eigenpairs, a 1 gets negated.
For the stretch modes, we observe that the 2D and 3D cases show

a pattern of deflations under D⊤H3D:(
0 1
1 0

)
(in 2D) ⇒ ©«

0 𝜎2 𝜎1
𝜎2 0 𝜎0
𝜎1 𝜎0 0

ª®¬ (in 3D) (17)

Combined with Eqn. 16, we hypothesize that for arbitrary 𝑛-D
stretchmodes, the generalized deflated scalingmatrix is 𝜕2𝐼3/𝜕 (vec(Σ) )2,
which can be expressed as:

(
D⊤H3D

)
𝑖 𝑗 =

{
𝐼3/𝜎𝑖𝜎 𝑗 𝑖 ≠ 𝑗

0 𝑖 = 𝑗
(18)

The scaling modes can then be isolated via eigendecomposition. We
have numerically verified that our hypothesis holds for up to 100
spatial dimensions. Code is provided in our supplemental materials.

4.4 𝐼1 Eigenanalysis
The 𝐼1 invariant does not appear in the SNH energy, but we present
its 𝑛-D eigenanalysis here so that any 3D isotropic energy, e.g. the
ARAP energy [Sorkine and Alexa 2007], can be rewritten in 𝑛-D.

If F = RS is the polar decomposition, then we can denote 𝐼1 =

tr(S). The gradient of 𝐼1 generalizes from 3D to higher dimensions
using tr(S) = tr(F⊤R), which yields 𝜕𝐼1/𝜕F = R. The Hessian is then
the 𝑛-D rotation gradient, H1 = 𝜕R/𝜕F. Similar to previous works
[Smith et al. 2019], we assemble it from its eigenpairs.
The 𝑛-D form of H1 has (𝑛2−𝑛)/2 non-zero eigenpairs. For any

𝑖, 𝑗 ∈ {0, 1, · · · , 𝑛 − 1} and 𝑖 < 𝑗 , there exists an eigenpair:

𝜆𝑖 𝑗 =
2

𝜎𝑖 + 𝜎 𝑗
Q𝑖 𝑗 =

1
√

2
UΘV⊤ (19)

where Θ ∈ R𝑛×𝑛 , with entries Θ(𝑖, 𝑗) = 1, Θ( 𝑗, 𝑖) = −1 and all other
entries are zero. The generalized rotation gradient is then:

H1 =

𝑛−2∑︁
𝑖=0

𝑛−1∑︁
𝑗=𝑖+1

𝜆𝑖 𝑗vec
(
Q𝑖 𝑗

) (
vec

(
Q𝑖 𝑗

) )⊤ (20)

We have numerically verified that this expression holds for up to
100 spatial dimensions, and code is provided in the supplement.

4.5 4D Stable Neo-Hookean
With the invariant analysis complete, we can now compute the
eigensystem of the SNH energy. The Hessian matches the general
form from 2D and 3D:

𝜕2𝜓SNH
𝜕F2 = 𝜇I + 𝜆

(
(𝐼3 − 𝛼) 𝜕

2𝐼3
𝜕F2 + g3g⊤3

)
(21)

The first dozen eigenvectors are exactly the twist and flip modes,
and the eigenvalues are

𝜆SNH𝑖 = 𝜆(𝐼3 − 𝛼)𝜆𝐼3
𝑖
+ 𝜇 (22)

which matches the general 3D form from Kim and Eberle [2022],
but with the extra dimension adding a new 𝜎∗ to each 𝜆

𝐼3
𝑖
. For the

final four eigenmodes, we build the remaining subspace spanned by
the scaling modes by treating it as a rank-one update to the reduced
matrix in Eqn. 16. We compute the four modes with a numerical
solver.

Equipped with eigensystems for the invariants 𝐼1, 𝐼2, and 𝐼3 in any
dimension, general hyper-dimensional deformation energy eigen-
analysis follows. For more details, see §2 in the supplement.
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5 COLLISION PROCESSING
As dimensionality increases, so does the the number of collision
primitive pairs. 2D has point-edge collisions, while 3D has point-
face and edge-edge collisions. For a dimension 𝑛, the number of
primitive pairs corresponds to the number of ways that 𝑛 + 1 points
can be split into two simplices: ⌈𝑛/2⌉. Thus, in 4D we again have
two cases to consider: point-tetrahedron and edge-triangle pairs.

5.1 Point-Tetrahedron Collisions
For point-tetrahedron pairs x𝑐 , {t0, t1, t2, t3}, we first find the tetra-
hedral barycentric coordinates {𝛼0, 𝛼1, 𝛼2, 𝛼3} of the closest interior
point to the colliding vertex:

argmin
𝛼0...3

0≤𝛼0...3≤1

x𝑐 − 3∑︁
𝑖=0

𝛼𝑖 t𝑖

 (23)

Solving for the 𝛼𝑖s, we then denote unsigned distance between a col-
lision point x𝑐 and the closest point on the tetrahedron

∑3
𝑖=0 𝛼𝑖 t𝑖 as 𝑙 .

Afterwards, we insert a spring force whenever a distance threshold
𝜖 is crossed, giving rise to a penalty energy

𝜓pt (𝑙) =
{
𝑘𝑐 (𝑠𝑙 − 𝜖)2 𝑙 < 𝜖

0 𝑙 ≥ 𝜖
(24)

where 𝑘𝑐 is a spring constant and 𝑠 ∈ {−1, 1} is set based on whether
x𝑐 is outside or inside the surface tetrahedron’s pentachoron.

5.2 Edge-Triangle Collisions
For edge-triangle pairs {e0, e1}, {t0, t1, t2}, we derive collisionweights
from a modified distance-finding minimization:

argmin
𝛽𝑖 ,𝛼𝑛

0≤𝛽𝑖 ,𝛼𝑛≤1

 1∑︁
𝑖=0

𝛽𝑖e𝑖 −
2∑︁

𝑛=0
𝛼𝑛t𝑛

 (25)

Taking the minimized value as the edge-triangle length 𝑙 and using
another spring force, we obtain the energy

𝜓et (𝑙) =
{
𝑘𝑐 (𝑙 − 𝜖)2 𝑙 < 𝜖

0 𝑙 ≥ 𝜖
(26)

where 𝑘𝑐 and 𝜖 are the same as in Eqn. 24.

5.3 Generalized 𝑛-D Collision Analysis
In line with previous analyses [Huang et al. 2024; Shi and Kim 2023],
we can derive a general eigensystem for 𝑛-D length-based penalties.
We will begin with the simple case of a single vertex against a set
of vertices, then expand to any two vertex sets.

5.3.1 Point-simplex length analysis. Consider a point x𝑐 ∈ R𝑛 and
a collection of 𝑘 points in R𝑛 denoted as {p0, ..., p𝑘−1} with convex
hull F . Let x𝑝 =

∑𝑘−1
𝑖=0 𝛼𝑖p𝑖 . For collisions, 𝛼𝑖 are the barycentric

coefficients that represent the point on F that is closest to x𝑐 , though
no assumptions on 𝛼𝑖 are needed in the following analysis.

We begin by taking derivatives of the general unsigned length
𝑙𝑢 =

x𝑐 − x𝑝
 by first defining intermediates:

v =


x𝑐
p0
.
.
.

p𝑘−1


w =


1

−𝛼0
.
.
.

−𝛼𝑘−1


P = I −

(x𝑐 − x𝑝 ) (x𝑐 − x𝑝 )⊤x𝑐 − x𝑝
2 (27)

The derivatives are then
𝜕𝑙𝑢

𝜕v
= g𝑙 =

1
𝑙𝑢
w ⊗ (x𝑐 − x𝑝 ) (28)

𝜕2𝑙𝑢
𝜕v2 = H𝑙 =

1
𝑙𝑢
ww⊤ ⊗ P (29)

where ⊗ is the Kronecker product. The Kronecker product implies
that the eigensystem of H𝑙 reduces to the eigensystems ofww⊤ and
P. Since P is a projection matrix into the subspace orthogonal to
x𝑐 − x𝑝 (denoted as (x𝑐 − x𝑝 )⊥), its eigensystem is:

𝜆P𝑗 = 1 qP𝑗 ∈ (x𝑐 − x𝑝 )⊥ (30)

Sinceww⊤ is an outer product, it has a single nontrivial eigenvector:

𝜆
(ww⊤ )
0 = 1 +

𝑘−1∑︁
𝑛=0

𝛼2
𝑛 q(ww⊤ )

0 = w (31)

The eigenpairs of H𝑙 are then constructed by selecting any two
eigenpairs from ww⊤ and P, multiplying their eigenvalues, and
taking the Kronecker product of their eigenvectors. The pairs with
non-zero eigenvalue then take the form

𝜆H𝑙 =
1
𝑙𝑢

(
1 +

𝑘−1∑︁
𝑛=0

𝛼2
𝑛

)
qH𝑙 ∈ w ⊗ (x𝑐 − x𝑝 )⊥ (32)

5.3.2 Simplex-simplex length analysis. With the point-simplex case
in hand, the simplex-simplex eigenanalysis follows. First, set x𝑐 ∈
R𝑛 to a weighted combination of 𝑠 points {r0, ..., r𝑠−1} to obtain
x𝑐 =

∑𝑠−1
𝑖=0 𝛽𝑖r𝑖 . Next, modify v and w from Eqn. 27:

v =
[
r0 . . . r𝑠−1 p0 . . . p𝑘−1

]⊤ (33)

w =
[
𝛽0 . . . 𝛽𝑠−1 −𝛼0 . . . −𝛼𝑘−1

]⊤ (34)

With 𝑙𝑢 =
x𝑐 − x𝑝

, the analysis in §5.3.1 holds with these variables
changed, and retrieves the point-simplex case when 𝛽0 = 𝑠 = 1.

5.3.3 Collision Energy Eigensystems. Collision energies are primar-
ily functions of unsigned length𝜓 (𝑙𝑢 ). By applying the chain rule,
the penalty derivatives take the form

𝜕𝜓

𝜕v
=

𝜕2𝜓

𝜕𝑙2𝑢
g𝑙

𝜕2𝜓

𝜕v2 =
𝜕2𝜓

𝜕𝑙2𝑢
g𝑙g

⊤
𝑙
+ 𝜕𝜓

𝜕𝑙𝑢
H𝑙 (35)

Since g𝑙 is within the null space of H𝑙 and is orthogonal to its non-
zero eigenpairs, the eigensystem for 𝜕2𝜓

𝜕v2 becomes:

𝜆
𝜓

0 =
𝜕2𝜓

𝜕𝑙2𝑢

(
1 +

𝑛−1∑︁
𝑘=0

𝛼2
𝑘

)
q𝜓0 = g𝑙 (36)

𝜆
𝜓

𝑖
=

𝜕𝜓

𝜕𝑙𝑢

1
𝑙𝑢

(
1 +

𝑛−1∑︁
𝑘=0

𝛼2
𝑘

)
q𝜓
𝑖
∈ w ⊗ (x𝑐 − x𝑝 )⊥ (37)
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The first eigenpair is a compression mode parallel to the penalty
direction, and the other modes represent orthogonal buckling. To
filter the Hessian, we check the signs of 𝜕𝜓/𝜕𝑙𝑢 and 𝜕2𝜓/𝜕𝑙2

𝑢 and take
absolute values as needed [Chen et al. 2024], avoiding any numerical
eigensolving.

6 PERFORMANCE AND RESULTS
To visualize 4D meshes, we used the method of Chu et al. [2009] to
maintain consistent surface normals and vertex/face ordering; their
slicing method for composing surface tetrahedra is also the primary
mode of visualization, and generates triangular meshes from surface
tetrahedra. We used Tetgen [Si 2015] to generate tetrahedral meshes
and used extrusion/filling from section 3.2 to create simulation-ready
pentachoral meshes. For videos, see the supplementary materials.

6.1 Results
6.1.1 Rotating Bunny. Rotations in 3D are about an axis, but general
rotations in 𝑛-D are better characterized by the two-dimensional
plane they act on. In 4D, a body can deform under two completely
independent rotations. We demonstrate this on a deformable bunny
prism by kinematically rotating its hyper-spherical core, first with
a 𝑥𝑧 rotation, then with a double rotation in 𝑦𝑧 and𝑤𝑥 (Fig. 4).

6.1.2 Armadillo Hugs. To demonstrate the expanded range of mo-
tion in 4D, we collide two armadillo prisms. Both move along the
𝑦 axis, while one rotates about the 𝑤𝑧 plane. Their contacts pro-
duce a variety of deformations that phase in and out of the 3D slice
we visualize. Rotating the scene is another way to understand the
interaction. A 90-degree rotation in the𝑤𝑥 plane makes the prism-
like geometry more apparent and the constant rotation in the gold
armadillo more visible (Fig. 1).

6.1.3 Hyper-Dimensional Twisting. To further visualize 4D deforma-
tion, we twist several hyper-dimensional octopus prisms. Twisting
two opposite ends of a prism along non-visible values of 𝑤 , the
4D component only becomes visible as warping artifacts along the
extremities of motion. Otherwise, objects appear to deform under
an unseen influence (Fig. 5). Twisting so that vertices within the
slice are forced to leave yields more effects as connected elements
deform to follow along (Fig. 6).

6.1.4 4D Noodles. 3D intuitions on space and proportionality can
misguide expectations when viewing 3D slices in 4D space. We drop
several deforming cylinders into a four-dimensional half sphere,
and observe that their deflection into the fourth dimension allows
for much less space to be filled than expected (Fig. 8). Indeed, five
noodles of length 20 and radius 1 only fill around 13% of the hy-
perbowl of radius 6, whereas in three dimensions they would fill
around 69% of a 3D bowl’s total volume.

6.1.5 Cantilevers. Keeping one end of a 4D cantilever constrained,
the beam becomes stiffer under gravity as we increase its Young’s
modulus. Capturing a 3D slice in the middle of the 4D prism yields
no noticeable effects. However, when choosing a slice near the prism
edge, we can see sections of the beam phase in and out (Fig. 7).

6.2 Performance
Collision processing dominated the runtime for the majority of
the scenarios, even after implementing AABB trees and basic mul-
tithreading. Force and Hessian assembly times similarly increase
with the number of contacts. Collision processing should dominate
more as the dimension increases. The ⌈𝑛/2⌉ collision cases means
that, e.g. in 5D, point-pentachoron, edge-tetrahedron, and triangle-
triangle pairs need to be queried. Detailed timings for each scene
are available in table 1 of the supplement.

7 CONCLUSIONS AND FUTURE WORK

7.1 Limitations
Our extrude and fill approach to meshes generates viable 4D meshes,
but also a specific look. Alternate approaches like higher-order
Delaunay [Aganj et al. 2007] could yield richer shapes. The “curse
of dimensionality” appears for pentachoral meshes, where a large
number of points are needed to obtain a high-resolution mesh, but
most of the points do not appear in the final visualization. One
solution might be to develop a surface-only 4D boundary-element
approach [Sugimoto et al. 2022] for deformation.
We also did not investigate specially tailored strategies for col-

lision detection or system solves that leverage the 4D structure of
the simulations, so additional efficiencies are possible there.

7.2 Future Work
The deformation invariants arise as coefficients of the characteristic
polynomial of F, so higher order invariants will appear at higher
dimensions. We found the existing invariants sufficed for SNH in
4D, but leave the characterization of new invariants to future work.

Finally, in the same way that the deformation equations are
dimension-agnostic, the Navier-Stokes equations could also be ex-
tended to 4D. Creating a 4D fluid simulation and coupling it to our
simulation is another avenue for creating previously unseen visuals.
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