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Fig. 1. 234K highly coiled hairs generated by combining our phase locking, period skipping, and switchback methods. The head is modelled after New York
Times bestselling author Carvell Wallace [Iguodala and Wallace 2019], and used with his permission.

We present geometric methods for generating shapes that are characteristic
of highly coiled hair. Different features become visually relevant when hairs
are well-approximated by high-frequency helices instead of low-frequency
curves, so we present algorithms for three such phenomena. First, a Fourier-
based method for phase locking, the process by which disparate helices near
the scalp coalesce into a single curl. Second, a method for period skipping
which models individual helices deviating from the coalesced curl. Third, a
non-linear optimization that directly generates the shapes of switchbacks,
a.k.a. helical perversions, which heretofore could only be produced through
direct physical simulation. By applying all three methods in tandem, we
show that we can achieve richly detailed depictions of highly coiled hair.
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1 Introduction
Hair modeling and simulation has been an active topic in com-
puter graphics research for over three decades [Anjyo et al. 1992].
While many advances have been made, they are usually demon-
strated on straight [McAdams et al. 2009], wavy [Kaufman et al.
2014], or loosely curled hair [Iben et al. 2013]. A handful of papers
[Bertails et al. 2005; Shi et al. 2023] have dealt with highly coiled,
Afro-textured hair, but only one full paper [Patrick et al. 2004] and
one short paper [Ogunseitan 2022] has specifically addressed the
geometric challenges of modelling this type of hair.
In this paper, we show that when highly coiled hairs, i.e. high-

frequency helices, are assumed to be the base primitive, then a
variety of challenging geometric phenomena appear that merit fur-
ther algorithmic investigation.
First, we examine how a group of disparate hairs coalesce into

a single coherent curl as they travel away from the scalp. We call
this phenomenon phase locking, borrowing the term’s use in neuro-
science [Kolev and Yordanova 1997] to describe multiple wavy sig-
nals falling into lock-step. Subsequently, we propose a data-driven,
Fourier-based method for computing this geometry to capture the
“spongy” texture of highly coiled hair near the scalp.
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Second, we present a direct geometric method for generating
switchbacks along a helix. These structures are also known as “changes
in handedness” or “helical perversions”. While they are common
in curly hair, the only previous method for generating them has
been high-resolution physics simulation [Bergou et al. 2008; Crespel
et al. 2024]. We build on static analyses from physics [McMillen and
Goriely 2002] to formulate a non-linear optimization that can insert
physically valid switchbacks anywhere on a helix.

Finally, we present a method for period skipping, a phenomenon
related to phase locking where an individual hair temporarily breaks
away from its coalesced curl. Precisely capturing this feature is cru-
cial to achieving the range of diffuse and shiny looks characteristic
of highly coiled hair. Our contributions are as follows:

• A data-driven, Fourier method for computing phase locking
between an ensemble of hairs.

• A non-linear optimization method for inserting physically
valid switchbacks anywhere along a helix.

• A simple geometric method for computing period skipping
within a coalesced curl of hair.

To demonstrate both the realism and scalability of our methods, we
include human-scale examples and several swatches.

2 Related Works
Many works on hair rendering, modelling, and simulation have
been developed over the years, and excellent surveys and courses
are available [Ward et al. 2007; Yuksel and Tariq 2010]. Here, we list
the works most relevant to our contributions.

2.1 Hair Interpolation
Directly simulating and modelling every hair on a human head has
long been impractical, though methods are constantly improving
[Daviet 2023]. Instead, a widespread practice is to select a subset of
“guide” hairs for modelling and simulation, and to interpolate a full
set of hairs from these guides. This approach has been used since
at least Watanabe and Suenaga [1992], who observed that nearby
hairs usually resemble each other, so duplicating a single guide into
thicker wisps is a viable strategy. Subsequently, wisps have also
accelerated simulations [Bertails et al. 2003; Choe et al. 2005].

Similar clustering notions appear in Disney’s “groom tubes” [Kaur
et al. 2018], and Animal Logic’s “hair tubes” [Narayan 2023]. Pixar’s
hair system performs nearest neighbor interpolation [Butts et al.
2018] while Sony Imageworks [Hasenbring and Karlsson 2021] in-
terpolates between guides and “final” hairs. These approaches are
mainly for straight or wavy hair. We instead present strategies that
are specifically tailored to high-frequency hair.
Many existing systems support scraggle [Butts et al. 2018; Haa-

paoja and Genzwürker 2019; Narayan 2023], which uses noise func-
tions (e.g. Perlin [1985]) to add variations to hair. While this ap-
proach is effective for straight and wavy hair, we will show that
highly coiled hair contains features that cannot be captured using
this family of spatially local functions alone.

2.2 Hair Modelling
Image-based methods for hair have been refined over the last two
decades [Paris et al. 2004], but many report issues when trying to

capture high-frequency features like curly hair [Jakob et al. 2009;
Sun et al. 2021; Zhang et al. 2017] or braids [Liang et al. 2018]. Much
of the difficulty stems from the images, which force the algorithms
to reconstruct complex internal structures using only surface data.
Recent methods have used volumetric CT data [Shen et al. 2023],
which is significantly costlier than camera images, or neural meth-
ods [Rosu et al. 2022] that only demonstrate efficacy on straight
hair. The geometric features for highly coiled hair we describe here
could potentially be used to inform future image-based methods.
Mesh-based [Yuksel et al. 2009] and multi-resolution [Kim and

Neumann 2002] methods have also been developed for direct ma-
nipulation of hair, but again are usually demonstrated on straight
and wavy hair. We present techniques for highly coiled hair.

2.3 Hair Simulation
Guide hairs can be driven by spring-mass [Iben et al. 2013; Selle
et al. 2008], Discrete Elastic Rod [Bergou et al. 2008], Super-Helix
[Bertails et al. 2003], Position-Based [Umetani et al. 2015], or finite
element-based [Shi et al. 2023] simulation methods.
Our methods are agnostic to the simulation method, including

pre-processes like inverse [Derouet-Jourdan et al. 2013] or sag-free
optimizations [Hsu et al. 2023]. However, to demonstrate generality,
we show results that involve both Discrete Elastic Rods [Bergou
et al. 2008] and Lifted Curls [Shi et al. 2023].

2.4 Hair Classification
We are investigating highly coiled hair, which under different classi-
fication systems might be called Type 4c, Type VIII [De La Mettrie
et al. 2007], or Type-O [Mafro and Mafro 2013]. We forego commit-
ting to a specific typing system, because they can contain key limita-
tions [Kim et al. 2022]. For example, Type 4c was informally added
to the original Walker [1997] system after criticism that Walker had
failed to include this historically neglected hair type [CurlCentric
2014]. Instead, we follow the recommendation of Darke et al. [2024]
and use the qualitative hair texture descriptor “coiled”.

2.5 Related Phenomena
The graphics phenomenon most related to our notion of phase
locking is the fiber-level modelling of yarns [Montazeri et al. 2019],
where micro-fibers combine into a larger (straight) yarn. We instead
track single helices that combine into a larger (non-straight) helix.
Our notion of switchbacks also appears in plants [Wang et al.

2013], bacteria [Mendelson 1978], and polymers [Wie et al. 2015].
While these prior works analyze the conditions under which switch-
backs occur, none ever instantiate the geometry. We present the
first method for directly computing the actual curve.
These shapes have also been called “spiral inversions” [Goriely

and Tabor 1998], “helix reversals” [Hancock et al. 2020], “tendril
perversions”, and ”helical perversions”. We choose to avoid using
the term “perversion” to describe a human feature, and instead opt
for the shorter and more descriptive term switchback.

3 Synthesizing Highly Coiled Hairs
We first examine the phenomenon of phase locking, where disparate
hairs coalesce into a single coherent curl (Fig. 2). Existing methods

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



Curly-Cue: Geometric Methods for Highly Coiled Hair • 3

Fig. 2. Phase locking in Instagram photo from @theesudani. The hairs form
a “spongy” layer near the scalp (light blue), but then coalesce into wisps
(light red). The phenomenon was accentuated using “finger coiling.” ©Yar
Sudani

Fig. 3. Synthesizing a single strand. (1) Start with a root point (gray) and
a guide strand (yellow). (2) Extract the guide’s centerline (green), §3.2.1.
(3) Interpolate from the root to the guide’s centerline (red). (4) Apply data-
driven helicity to the interpolated strand, §3.3.3. (5) Repeat to obtain a wisp.

that linearly interpolate guide hairs [Butts et al. 2018] do not suffice,
because rich frequency information is destroyed under linear inter-
polation, e.g. averaging a sine wave with its 𝜋/2 shifted counterpart
yields a line. We will instead present a frequency-aware alternative.
Distinct geometric regions emerge in highly coiled hair that are

absent in straighter hair. The uncorrelated, highly coiled hairs near
the scalp form a “spongy” texture, and neglecting this region creates
the impression of wig instead of naturalistic growth. (Fig. 10, left)
Further from the scalp, the hairs coalesce into curls. (Fig. 3, right)
We explicitly model both of these regions.

3.1 Geometry Preliminaries
3.1.1 Piecewise Spline. We model each hair strand as a C1 con-
tinuous curve c(𝑡) in R3 composed of a piecewise cubic Hermite
(Catmull-Rom) spline. Given a sequence of points {p0, ..., p𝑛} along
a strand, the piecewise spline c𝑖 (𝑡) connecting p𝑖 to p𝑖+1 over the
interval 𝑡 ∈ [𝑖, 𝑖 + 1) is given by

c𝑖 (𝑖) = p𝑖 c𝑖 (𝑖 + 1) = p𝑖+1
𝜕c𝑖 (𝑖)
𝜕𝑡

=
p𝑖+1 − p𝑖−1

2
𝜕c𝑖 (𝑖 + 1)

𝜕𝑡
=

p𝑖+2 − p𝑖
2

At the ends c0 and c𝑛−1, we do a weighted average of the slopes at
the two closest points:

𝜕c0 (0)
𝜕𝑡

= (p2 − p0) −
(p3 − p1)

2

𝜕c𝑛−1 (𝑛)
𝜕𝑡

= (p𝑛 − p𝑛−2) −
(p𝑛−1 − p𝑛−3)

2
The final piecewise curve is then c(𝑡) = c𝑖 (𝑡), 𝑡 ∈ [𝑖, 𝑖 + 1) . For
simplicity, we use 𝑡 → 𝑛𝑡 to remap the domain of c(𝑡) to [0, 1].

3.1.2 Curve Frames. Our curve c(𝑡), needs u(𝑡) and v(𝑡) directions
that span the plane orthogonal to the curve’s direction 𝜕c(𝑡 )/𝜕𝑡 ,
yielding an oriented orthogonal frame {u, v, 𝜕c(𝑡 )/𝜕𝑡}. There are
many ways to compute u(𝑡) and v(𝑡), such as Frenet frames or
parallel transport. Our method is agnostic to any specific technique;
we describe our specific strategy in §5.1.1.

3.2 Frequency Analysis of Strands
To convert a single guide hair into multiple hairs coalescing into a
wisp, we perform two separate frequency analyses. First, a Fourier
analysis extracts the low-frequency centerline of each guide hair.
Second, we use the centerline algorithm to extract high frequency
spectra from a dataset of full-resolution simulations. These spectra
are then used in §3.3 to synthesize high-frequency "spongy" regions.

3.2.1 Centerline Extraction. An obvious candidate for Fourier anal-
ysis is the 𝑥 , 𝑦, and 𝑧 components of the curve points p𝑖 . We instead
prefer the translation-agnostic method of Zhou et al. [2023], which
constructs the displacement-based sequence x𝑖 = p𝑖+1−p𝑖 , and then
performs a separate DFT along each component of {x𝑖 }𝑁−1

𝑖=0 .
This results in a triplet of coefficient vectors {k𝑖 }𝐾𝑖=1 ∈ C3 where

C is the complex domain and 𝐾 = ⌊𝑁 /2⌋ +1. We have found that ap-
plying a IDFT to the first three k1,2,3 yields displacements {x∗

𝑖
}𝑁−1
𝑖=0

that form an excellent centerline for the original helix.
By construction, this process yields a centerline rooted at the

origin. We compute a suitable scalp root translation t∗ using an
approach similar to shape matching [Müller et al. 2005]. If p∗

𝑖
=∑𝑖−1

𝑗=0 x
∗
𝑗
denotes the reconstructed centerline points at the origin, a

simple quadratic energy yields a crisp, closed-form solution:

t∗ = argmin
y

𝑁∑︁
𝑖=0

p∗𝑖 + y − p𝑖
2 = 1

𝑁 + 1

𝑁∑︁
𝑖=0

(p𝑖 − p∗𝑖 ) . (1)

The final centerline c𝑐 (𝑡) is then the piecewise spline from §3.1.1
constructed through the points {p𝑐

𝑖
}𝑁
𝑖=0 = {p∗

𝑖
+ t∗}𝑁

𝑖=0.

3.2.2 High-Frequency Feature Extraction. We can now extract the
centerline for any helical curve, and will use this approach to ex-
tract high-frequency details from the strands of a full-resolution
simulation. In §3.3, we will transfer these extracted details onto the
smooth centerlines of interpolated strands.
Starting from curve points {p𝑖 }𝑁𝑖=0 from a full-resolution simu-

lation, we compute its centerline {p𝑐
𝑖
}𝑁
𝑖=0, and radial offsets from

that centerline, R = {r𝑖 }𝑁𝑖=0 = {p𝑖 − p𝑐
𝑖
}𝑁
𝑖=0. Then we project each r𝑖

against the orthogonal basis {u𝑖 , v𝑖 , (𝜕c/𝜕𝑡)𝑖 } from §3.1.2, to obtain
r𝑖 = 𝛼𝑖u𝑖 + 𝛽𝑖v𝑖 + 𝛾𝑖 (𝜕c/𝜕𝑡)𝑖 . Helices without switchbacks (§4) only
need to project against u𝑖 and v𝑖 . Taking the DFTs of the 𝛼𝑖 and
𝛽𝑖 sequences yields another coefficient vector {w𝑖 }𝐿𝑖=1 ∈ C2 with
𝐿 = ⌊𝑁+1/2⌋ + 1. Taking the norm and arg of w𝑖 yields amplitude
and angle spectra, respectively A = {a𝑖 }𝐿𝑖=1 and T = {𝜽𝑖 }𝐿𝑖=1.

These A and T vectors are now centerline-agnostic descriptions
of a strand’s high-frequency features. These features can now be
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transferred, e.g. in the spirit of Sorkine et al. [2004], to any new
spline by applying them to that curve’s radial offsets R.

Fig. 4. Simulating 2592 strands at human-scale hair density using Shi et al.
[2023]’s simulator. Initially set in a perfectly straight ”comb” (left), they
settle into a “spongy” texture (right) after simulating for 31 hours. Simulating
200K hairs would take ∼100 days. Instead, we use the spectra from this
simulation to synthesize a “spongy” layer.

3.2.3 Dataset Construction. Direct simulation of 200K strands of
hair on a head remains daunting, especially for the ∼80 vertices
needed per highly coiled hair, in lieu of the 30 vertices needed in
straight-hair examples [Daviet 2020; Kaufman et al. 2014]. Collision
processing also presents new challenges.

We simulated a small patch of highly coiled hair at human-scale
density, allowing the dynamics to settle and intricate entanglements
characteristic of the “spongy” layer to form (Fig. 4). Direct simulation
of a full head would have taken ∼100 days, so we instead extract
A and T spectra from each hair in this sequence. Next, we will
transfer these details onto interpolated strands.

3.3 Strand Interpolation and Synthesis
3.3.1 Assigning Roots to Guides. Given a sparse set of guides and a
dense set of hair root positions, we must first assign each root to a
guide. The simplest strategy is nearest-neighbor; assigning based
on the Voronoi diagram of the guides. However, this creates hard
boundaries along the scalp, and the underlying Voronoi cells become
visible. While this may be desirable for precision hairstyles like box
braids, fuzzier boundaries are expected in general. We instead used a
“noisy” Voronoi assignment by picking randomly from the 𝑁 -closest
guides to each root point (see supplemental video).

3.3.2 Single-Strand Interpolation. We now focus on a single strand,
startingwith its guide strandVG = {p0, p1, ..., p𝑁 }, and its extracted
centerline cG (𝑡). The root position q0 of the new hair is already
known from §3.3.1, so our goal is to compute the centerline cI of
a new, interpolated strand, and then generate the new hair spline
VI = {q0, q1, ..., q𝑁 }.
The interpolated strand consists of two parts:
• A loosely-guided region corresponding to the “spongy” layer
that is only loosely influenced by the guide strand.

• A strictly-guided region, where the strand has phase-locked
coherently into the overall curl.

We set the boundary between the loosely- and strictly-guided region
at 𝑙 ∈ [0, 1] (for loose). The full strand is then the concatenation of

Fig. 5. Period skipping in a hair sample photo. Red arrows point to high-
lighted hairs that temporarily drop out of phase, but later rejoin the helix,
essentially stretching out one of their periods.

the two sequences VI = {VLVS}. We describe the construction of
VL and VS separately.

3.3.3 Loosely Guided Region. For 𝑡 ∈ [0, 𝑙], the strand has not yet
coalesced into a path following the guide strand. However, it still has
an intrinsic curvature and helical frequency influenced by its guide.
We use the centerline of the guide strand, cG (𝑡), to set the boundary
conditions for the centerline cI (𝑡) of the interpolated strand:

cI (0) = q0
𝜕cI (0)
𝜕𝑡

=
(cG (𝑙/2) − q0)

cG (𝑙) − q0
cG (𝑙/2) − q0


cI (𝑙) = cG (𝑙) 𝜕cI (𝑙)

𝜕𝑡
=
𝜕cG (𝑙 )/𝜕𝑡

cG (𝑙) − q0
𝜕cG (𝑙 )/𝜕𝑡

The derivative boundary conditions ease the interpolated spline
into the guide’s centerline, while the

cG (𝑙) − q0
 term ensures that

derivative magnitudes scale with the geometry. (Fig. 3, middle)
Letting 𝑘 = ⌊𝑙 × (𝑁 + 1)⌋ and sampling 𝑘 points equidistantly

along cI gives a sequence of centerline points {cI𝑖 }
𝑘−1
𝑖=0 . We can then

transfer radial offsets according to a randomly selected A and T
from the dataset of fully-simulated strands from §3.2.2. The sequence
of points q𝑖 = {cI

𝑖
+ r𝑖 }𝑘−1𝑖=0 then define VL.

3.3.4 Strictly Guided Region. For 𝑡 ∈ [𝑙, 1], every strand follows
along with the guide strand’s shape, similar to Narayan [2023].
Beginning with {p𝑖 }𝑁𝑖=𝑘 , we compute u(𝑡) and v(𝑡) at any p(𝑡)
according to §3.1.2, and randomly sample 𝛼, 𝛽 from the unit square
to create a transported displacement function

d(𝑡) = 𝑤 (𝑡) (𝛼u(𝑡) + 𝛽v(𝑡)) (2)

where𝑤 (𝑡) is a wisp radius function. Sampling at the same rates as
{p𝑖 }𝑁𝑖=𝑘 , we obtain VS = {p𝑖 + x𝑖 }𝑁𝑖=𝑘 .

3.4 Period Skipping
3.4.1 Geometric Observations. The strictly guided regions of the
wisp (§3.3.4) form coherent helical bundles, and even with the varia-
tion inserted via the𝑤 (𝑡) function, the wisps look shinier and more
uniform than in real-life photographs.

Closer examination of real-life hair samples reveals what is caus-
ing this difference. In the strictly guided region, while hairs are
largely phase-locked into a coherent helix, many occasionally skip
some of the helical turns (Fig. 5). They drop out of phase for a period,

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.



Curly-Cue: Geometric Methods for Highly Coiled Hair • 5

Fig. 6. Photo from Darke et al. [2023] of a switchback in human hair.

then later rejoin the helix. These hairs can run orthogonal to the rest
of the helix, which then break up the coherency of the highlights.

3.4.2 Algorithmic Treatment. This visual phenomenon is difficult to
achieve with scraggle [Butts et al. 2018; Haapaoja and Genzwürker
2019; Narayan 2023] because it must alter low-frequency com-
ponents in a strand. Scraggle usually excels at introducing high-
frequency variations. (Fig. 10, middle)

In contrast, period skipping is straightforward with our model. If
we let each strand’s guide curve be a subset of the the guide points
VG ⊂ VG, generated by discarding points p𝑖 according to proba-
bility 𝜌 , then the piecewise spline will automatically generate the
missing features. Periods are skipped, but the boundary conditions
derived from the remaining p𝑖 maintain the hair’s smoothness. De-
spite its apparent simplicity, we found this approach has a dramatic
impact on the overall look of the hair. Altering 𝜌 produces a range
of appearances that were previously difficult to achieve. (Fig. 12)

4 Generating Switchbacks
The geometry of switchbacks can be found throughout nature, from
plants [Wang et al. 2013] to polymers [Wie et al. 2015] to hair
(Fig. 6), and appear whenever a change of handedness occurs in a
helix. They are distinct from the skipped periods in §3.4, where one
errant period in a helix spans multiple periods in a coalesced curl.

Despite its apparent ubiquity, we have not found any method for
computing this shape other than direct physical simulation [Bergou
et al. 2008; Crespel et al. 2024], i.e. stretch out a simulated helix
until it deforms into a switchback. While the geometry appears
simple, extensive mechanical studies [McMillen and Goriely 2002;
Wang et al. 2020] have shown that it has no compact, closed form
expression. Thus, we present here the first non-linear optimization
capable of directly computing the shape of a switchback.

4.1 Elastic Rod Preliminaries
4.1.1 Arc Lengths and Directors. We use 𝑠 to denote arc length
along a rod. This is distinct from the 𝑡 ∈ [0, 1] parameterization
from §3.1.1, particularly because we will be examining boundaries
as 𝑠 → ±∞. We adopt the Lagrange notation of (·)′ = 𝜕(·)/𝜕𝑠 , as
derivatives in terms of arc length will arise often. The shape of the
curve is then c(𝑠) : R→ R3. The curve has an orthonormal director
basis {d1 (𝑠), d2 (𝑠), d3 (𝑠)}, where d3 (𝑠) is the tangent vector (Fig. 7)

d3 (𝑠) =
𝜕c(𝑠)
𝜕𝑠

(3)

For any orthonormal basis of the curve, there is a twist vector
𝜿 (𝑠) = ^1 (𝑠)d1 + ^2 (𝑠)d2 + ^3 (𝑠)d3 such that

d′𝑖 (𝑠) = 𝜿 (𝑠) × d𝑖 (𝑠). (4)

The ^1 and ^2 terms are often referred to as curvature and ^3 as
torsion. d1 (𝑠) and d2 (𝑠) lie in the cross-sectional plane of the rod.
This basis can be defined by the material axes and is distinct from
the Frenet frame of the curve because of torsion.

4.1.2 Dimensionless Form. With the directors defined, we can in-
troduce mechanical properties. We have found that it is more com-
pact and structure-revealing to write things in dimensionless form.
Let ·̃ denote the original dimensional forms. We scale by the rest
curvature 𝑘0 of the helix to obtain the dimensionless twist vector
𝜿 = �̃�/𝑘0, arc length 𝑠 = 𝑠𝑘0, and overall curve c = c̃𝑘0. Forces
f = f̃/𝐸𝐼1 (𝑘0 )2 and moments m = m̃/𝐸𝐼1𝑘0 are also scaled, where 𝐸
is Young’s modulus and 𝐼1 is the scaled principal moment of iner-
tia. This dimensionless form reveals that our analysis can proceed
independent of Young’s modulus (𝐸) and rest state coil radius (𝑘0).

4.1.3 Static Analysis. A static rod can be described using the Kirch-
hoff equations:

f ′ = 0 m′ + d3 × f = 0. (5)

We can then use linear elasticity to compute forces:

m =

(
^1 − ^01

)
d1 + Λ

(
^2 − ^02

)
d2 + Γ

(
^3 − ^03

)
d3 (6)

where ^0
𝑖
are the rest state twist vector components, and Λ = 𝐼2/𝐼1 is

the ratio of the moments of inertia along d2 and d1. We will assume
Λ = 1 going forward, because while elliptical cross-sections can
induce helicity in plants [Farhan et al. 2023], curliness in human
hair is caused by inhomogeneous fiber distributions [Wortmann
et al. 2020]. Using Poisson’s ratio `, we set Γ = 1/(1+ `). Forces can
now be related to 𝜿 (𝑠), which can then be used to compute a curve
c(𝑠) by integrating Eqns. 3 and 4.

4.2 Helix Solution
4.2.1 Energy Formulation. We can further tailor these equations to
solve for a helix. Once that solution is known, we will modify it to
accommodate a switchback. For a helix, the rest state twist vector is

𝜿0 (𝑠) = d1 + ^03d3, (7)

and the equation for a curve running along x̂ = [1 0 0]⊤ is

c(𝑠) = 1
_2

cos (_𝑠)ŷ + 1
_2

sin (_𝑠)ẑ +
^03
_
𝑠 (8)

where _ =

√︂
1 +

(
^03

)2
, ŷ = [0 1 0]⊤, and ẑ = [0 0 1]⊤. In this case,

^02 = 0 and ^01 and ^
0
3 are constants with respect to 𝑠 . Furthermore,

^01 = 1 since the unscaled ˜̂01 is equal to the rest state curvature 𝑘0 .
By plugging Eqns. 6 and 4 into the static Kirchhoff equations, we

obtain static equilibrium conditions in terms of twist and forces:

𝑓 ′1 = 𝑓2^3 − 𝑓3^2 ^′1 = 𝑓2 − (Γ − 1)^2^3 + Γ^03^2 (9)

𝑓 ′2 = 𝑓3^1 − 𝑓1^3 ^′2 = −𝑓1 + (Γ − 1)^2^3 + ^3 − Γ^03^1 (10)
𝑓 ′3 = 𝑓1^2 − 𝑓2^1 ^′3 = −^2/Γ (11)
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6 • Wu and Shi, et al.

We still cannot solve for 𝜿 (𝑠) because the above system is under-
constrained. Building from Eqn. 23 in McMillen and Goriely [2002],
we observe that a stable shape would minimize the following energy
density function

E (𝜿) = 1
2
(^1 − 1)2 + 1

2
^22 +

Γ

2

(
^3 − ^03

)2
− ∥f ∥a (12)

which sums the elastic and potential energy of an external stretching
force f running down the centerline of the helix. Here, a = ^3/

√︃
^21+^23

denotes the coil frequency. Solving for the shape of a helix deforming
under f can be viewed as minimizing

𝜿 (𝑠) = argmin
𝜿

∫
𝑠

E (𝜿) 𝑑𝑠, (13)

subject to the constraints in Eqns. 9-11.

4.2.2 Force Substitution. For an infinitely long helix, the twist vec-
tor about 𝑠 → −∞ should be

𝜿ℎ = ^ℎ1 d1 + ^
ℎ
2 d2 + ^

ℎ
3 d3, (14)

where we constrain ^ℎ2 = 0, and use the ℎ superscript to denote the
helix solution we seek. Plugging the above into Eqns. 9-11 yields

fℎ =

(
1
^ℎ1

− 1 + Γ

(
1 −

^03

^ℎ3

))
^ℎ3𝜿

ℎ . (15)

By Eqn. 5, this force is a constant along the entire curve, and should
be equal to the external force at both ends. We can eliminate f from
Eqn. 12 by substituting in Eqns. 14 and 15:

E
(
𝜿ℎ

)
=

1
2

(
^ℎ1 − 1

)2
+ Γ
2

(
^ℎ3 − ^03

)2
−
(
1
^ℎ

− 1 + Γ

(
1 −

^03

^ℎ3

)) (
^ℎ3

)2
.

This energy density is constant with respect to 𝑠 , and parameterized
entirely by ^ℎ1 and ^ℎ3 .

4.2.3 Final Helix Expressions. For the final solution, we consider
a ∈ [−1, 1]. If we can find the 𝜿ℎ that corresponds to the energy
gradient vanishing as 𝜕E

𝜕^ℎ1
= 𝜕E
𝜕^ℎ3

= 0 at a fixed external force fℎ ,
then we have the solution. We can solve for this state analytically:

^ℎ1 =
1 − a2 + Γa

√
1 − a2^03

1 + (Γ − 1)a2
^ℎ2 = 0 (16)

^ℎ3 =
^03
2

+ sgn(a)

√√√ (
^03

)2
4

+
^ℎ1
Γ
(1 − ^ℎ1 ). (17)

This forms a family of ellipses in the
(
^ℎ1 , ^

ℎ
3

)
plane. Combining the

above equation with a = ^3/
√︃
^21+^23 , the twist vector at equilibrium

can be completely determined by a . These helix solutions will now
serve as boundary conditions when we insert switchbacks.

4.3 Switchback Insertion
4.3.1 Helix Perturbation. With the helical solution 𝜿ℎ established,
we now perturb it compute a switchback solution 𝜿Ω . We use Ω
because it looks like a switchback.

If we insert a switchback centered at 𝑠 = 0, we can assume that as
𝑠 → ±∞, the shape reverts to a helix. Previous work [McMillen and
Goriely 2002] showed that switchbacks decay exponentially quickly

Fig. 7. The curve director basis along the curve and the twist boundaries.

in space. Thus, we can apply helical boundary conditions to ^1 and
^3 at the ends of a coil containing a switchback, even if the total
arc length is finite. However, in the case of a switchback curve, the
handedness of the boundaries flip (Fig. 7):

𝜿Ω → (^ℎ1 d1 + ^
ℎ
3 d3) when 𝑠 → ∞ (18)

𝜿Ω → (^ℎ1 d1 − ^
ℎ
3 d3) when 𝑠 → −∞. (19)

While this narrows down the possibilities for 𝜿 (𝑠), solving the vari-
ational problem without a specific family of functions remains chal-
lenging. Consequently, we adopt the Rayleigh-Ritz approximation
from Wang et al. [2020], which propose that ^1 and ^2 can be ap-
proximated by:

^Ω1 = 𝑎1𝑒
−𝑏1𝑠2 cos(𝑐1𝑠) + 𝑎2𝑒−𝑏2𝑠

2
cos(𝑐2𝑠) + ^ℎ1 (20)

^Ω2 = 𝑎3𝑒
−𝑏3𝑠2 cos(𝑐3𝑠) + 𝑎4𝑒−𝑏4𝑠

2
cos(𝑐4𝑠) + ^ℎ2 . (21)

The original helix solutions are highlighted as the red ^ℎ1 and ^ℎ2 .
The remaining terms are exponentially decaying cosine “bumps”
that perturb the original helix. The parameters {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 } are what
we must now optimize for. The remaining ^Ω3 can then be solved
for by integrating Eqn. 11 and applying two boundary conditions:

^Ω3 = − 1
Γ

∫
𝑠

^Ω2 𝑑𝑠 lim
𝑠→−∞

^Ω3 = ^ℎ3 lim
𝑠→∞

^Ω3 = −^ℎ3 (22)

The solution has the analytic form:

^Ω3 = −𝛼 Re
(
erf

(√︁
𝑏3𝑠 +

𝑐3

2
√
𝑏3𝑠

𝑖

))
−(^ℎ3−𝛼) Re

(
erf

(√︁
𝑏4𝑠 +

𝑐4

2
√
𝑏4𝑠

𝑖

))
where 𝛼 =

𝑎3
2Γ

√︃
𝜋
𝑏3
𝑒

−𝑐23
4𝑏3 , Re(·) extracts the real component, and

erf (·) is the Gauss error function. Again, the helix solution ^ℎ3 gets
perturbed by the other terms. There are now 12 free parameters,
{𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 }, but one can be set using the boundary condition:

𝑎4 =
√︁
𝑏4𝑒

𝑐24
4𝑏4

(
2Γ^ℎ3√
𝜋

− 𝑎3√
𝑏3
𝑒
−

𝑐23
4𝑏3

)
(23)

This leaves 11 parameters to optimize. We write them as a vector
n = [𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2, 𝑎3, 𝑏3, 𝑐3, 𝑏4, 𝑐4]⊤, and minimize them over
the energy density from Eqn. 12:

n = argmin
n

∫
𝑠

E(𝜿Ω) 𝑑𝑠 (24)

4.3.2 Symmetry Regularization. Until
now, we have focused on switchback
insertion. However, Eqn. 24 lacks a key
feature: left-right symmetry. Without it,

we have found that half of the helix shoots off at a random and
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Table 1. Performance of our Curly-Cue geometric methods. Our unoptimized, single-threaded Python implementation is on par with the running times of
the simulation [Shi et al. 2023] and rendering in Blender. All timings are per frame, and in minutes:seconds, unless otherwise indicated.

Fig. Sim. Strands Render Hairs Sim. Time Curly-Cue Time Render Time Sim. Verts Curly-Cue Verts
1, 8 8,546 233,933 03:10 44:57 28:05 552,271 13,118,079
10, 12 98 3,176 00:05 00:55 14:50 10,499 309,296
13 1 161 0.05s 0.2s 01:44 103 15,024
14 6,525 165,077 00:23 05:01 09:52 44,425 914,492
9 2,038 119,840 03:19 55:10 32:50 546,130 17,658,566

uncontrollable angle (see left inset), which is inconsistent with the
helix boundaries.
Thus, we add a regularizer that encourages the overall curve to

remain straight by requiring that the tangent at 𝑠 = 0 run parallel to
the centerline. Since we assumed in Eqn. 8 that the curve’s centerline
runs along x̂ = [1 0 0]⊤, the symmetry condition is:

1 − (d3 (0) · x̂)2 = 0. (25)

Adding this to the optimization yields our final energy:

n = argmin
n

((
1 − (d3 (0) · x̂)2

)
+

∫
𝑠

E(𝜿Ω) 𝑑𝑠
)

(26)

Computing d3 (0) will be described in §4.3.3.

4.3.3 Curve Generation. After obtaining 𝜿Ω (𝑠) via non-linear opti-
mization (§5.1.4), we can use it to integrate Eqn. 4, obtain a director
basis {d1, d2, d3}, and integrate Eqn. 3 to obtain the final curve c(𝑠).
Integrating Eqn. 3 using forward Euler is straightforward, but

Eqn. 4 involves rotating an orthonormal basis. We have found that
brute-force basis renormalization introduces visible numerical drift,
so in the spirit of Lie group integrators [Angelidis 2017], we build
a rotation matrix R(𝑠) for each Euler step. The directors d𝑖 rotate
about the axis 𝜿Ω , so for a step size Δ𝑠 , the angle is Δ𝜙 = ∥𝜿 ∥Δ𝑠 .
After constructing R(𝑠), we integrate the directors along 𝑠 according
to d𝑖 (𝑠 + Δ𝑠) = R(𝑠) d𝑖 (𝑠). This ensures that the directors remain
orthonormal, and we have found it dramatically reduces numerical
drift. Finally, our algorithm successfully generates switchbacks:

4.3.4 Rest State Symmetry Analysis. To simplify their analyses, pre-
vious mechanics works have limited their discussions to circular
rest states of 𝜿0 = (1, 0, 0). Our derivation generalizes to helical rest
states with any number of switchbacks. However, this can imply
that a helical solution with a single change-of-handedness is no
longer a suitable boundary condition. Instead, an even number of
switchbacks is required along a helix. In this case, the boundary
conditions should be 𝜿Ω →

(
^ℎ1 d1 + ^

ℎ
3 d3

)
as 𝑠 → ±∞.

If multiple switchbacks are sufficiently separated, their perturba-
tion terms (Eqns. 20 and 21) can be linearly summed and translated.
When two switchbacks are close to each other, we can optimize for
their combined shape and obtain an S-shaped double switchback:

We provide source code in our supplemental materials.

5 Implementation and Results

5.1 Implementation Details
5.1.1 Frame Generation. In §3.1.1 every point on c(𝑡) needed a
frame {u, v} orthonormal to 𝜕c(𝑡 )/𝜕𝑡 . While many methods are avail-
able [Duff et al. 2017; Max 2017], we found that following sufficed:

u(𝑡) = 𝜕c(𝑡 )/𝜕𝑡 × x̂ v(𝑡) = 𝜕c(𝑡 )/𝜕𝑡 × u(𝑡). (27)

If 𝜕c(𝑡 )/𝜕𝑡⊤x̂ = 1, then x̂ is randomly sampled from the unit sphere.

5.1.2 Strand Variation. To vary hair lengths within each wisp, we
compressed the range over which points are sampled along each
strand curve, to [0, 1 − 𝜖], where 𝜖 is chosen randomly.

5.1.3 Fades. For regions with hairs shorter than a single curl, coa-
lescing behaviour is not expected, so individual strands duplicate
their guide strand (Fig. 11). By transitioning between this and the
method of §3 for longer hair, we can achieve a range of looks.

5.1.4 Non-Linear Optimization. Computing switchbacks involves
optimizing Eqn. 26, and we found derivative-free methods such
as Nelder-Mead [Nocedal and Wright 2006] sufficed, so deriving
gradient terms is unnecessary. To improve convergence, we replaced
the integral in Eqn. 26 with a sparsely sampled∞-norm in the region
around the switchback. Each optimization took ∼10s, or ∼1.5s when
warm-started with a solution from a similar a .

5.2 Results
The spongy layer created by our phase locking algorithm can be
seen on the right of Fig. 10. Traditional wisp [Watanabe and Suenaga
1992] and scraggle [Butts et al. 2018] methods (Fig. 10, left, middle)
maintain the curls up to the scalp, and create a wig-like look.
By changing the skipping probability 𝜌 in §3.4, we can achieve

a range of different looks (Fig. 12), from shiny with highly visible
coils, to diffuse with brushed apart coils. In the supplemental video,
we show that these features stay coherent under animation.

Our switchback method is flexible enough that it can insert the
shape anywhere along an existing wisp (Fig. 13, middle), and even
multiple times on a single wisp (Fig. 13, right). They are inserted
prior to simulation so they can deform under external forces. We are
able to generate looks that are distinct from previous approaches
[Daviet 2023; Hsu et al. 2023; Shen et al. 2023; Zhou et al. 2023].
While these papers presented methods that tried to encompass
multiple hair types, we focused on a single, under-investigated hair
type to achieve its characteristic look. Our algorithm generalizes to
human-scale, as seen on our models of New York Times bestselling
author Carvell Wallace [Iguodala and Wallace 2019] (Figs. 1, 8).
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Fig. 8. Close-ups and additional angles on the Carvell Wallace model from Fig. 1. The simulation consisted of 8K strands that were interpolated using our
methods into 233K hairs for rendering. Period skipping was set to 𝜌 = 0.5 and switchbacks were inserted prior to simulation (bottom row, middle).

We inserted switchbacks into the hair, and one can be seen on the
bottom row of Fig. 8. Alternate renders with different 𝜌 are shown
in the supplemental video. Figs. 14 and 9 showcase additional styles.

We verified our switchback geometry using Discrete Elastic Rods
[Bergou et al. 2008] by running an example that verifies a helix is
also a stable state. The simulation is in the supplemental video. As
seen in Table 1, the timings for our Curly-Cue methods are on par
with the simulation and rendering. Our current implementation is
unoptimized, single-threaded Python, so we’d expect a high-
performance, parallel implementation to run ∼10× faster.

5.3 Limitations
Phase locking is currently applied as a geometric post-process, and
does not play an active role in the simulation. A more realistic
approach would directly simulate the spongy layer near the scalp.

The effects the geometric phenomena we have modelled decrease
as hair becomes straighter. For example, period skipping loses mean-
ing for straight hair that does not turn through a single helical period.
Finding the precise frequencies at which these phenomena become
visually irrelevant will need further empirical investigation. The
switchback optimization can still take a few seconds to compute
the shape, especially when solving for small coil frequencies from a
cold start. The current method also cannot directly solve for shapes

under complex external forces. We instead approximate them by
integrating the switchback into the hair simulator.

6 Conclusions and Future Work
We have presented algorithms for three geometric phenomena char-
acteristic of highly coiled hair: phase locking, period skipping, and
switchbacks. Our switchback formulation applies to other scenarios
where they occur, such as plant synthesis [Niese et al. 2022]. Our
methods are for relatively unstyled hair, but a wide range of highly
coiled styles exist, such as box braids, twist-outs and natural locs
[Darke et al. 2023]. Investigating whether our current methods gen-
eralize to these styles, or if they involve new geometric phenomena
that require new methods, remains future work. Finally, efficiently
simulating highly coiled hairs, with their larger vertex counts and
unique collision behaviors, remains a challenge.
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Fig. 9. Close-ups and additional angles on the Carvell Wallace model with longer hair.

Fig. 10. Wisps generated with Watanabe and Suenaga [1992] are coherent at the scalp (red box), creating the appearance of a wig. Adding scraggle (magenta
box) wrinkles the hair, but the wig look remains. Our phase locking method (green box), creates a spongy layer that transitions into coils.
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Fig. 11. Our approach handles a range of hair lengths, from close cut fades (left) to longer coils (right).

Fig. 12. Left to right: Period skipping setting 𝜌 = 0.0, 0.25, 0.50, and an extreme 0.75. The appearance of each wisp changes, but so does the overall look,
even though the rendering material parameters are the same. As more periods are skipped, the sharp highlights on the coils become more diffuse.

Fig. 13. Left to right: single wisp with no switchbacks, a switchback inserted near the wisp tip, one inserted near the middle. We can insert multiple
switchbacks on one wisp, so on the right shows insertions near the middle and tip.

Fig. 14. Close-ups and additional angles on the Carvell Wallace model with shorter hair.
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